Category Archives: QUBS News

News from the Queen’s University Biological Station

Two centuries of plant diversity data uncovered

By Mahsa Aghaeeaval

The Queen’s University Biological Station (QUBS) harbours a treasure that few people know of – The Fowler Herbarium. This is where I spent much of my time during Summer 2019 as the “Data Management and Herbarium Assistant”, a position supported by Queen’s University via their Summer Work Experience Program (SWEP). The Fowler Herbarium is a natural history collection containing approximately 140,000 plant specimens from all over the world, including non-vascular plants, (mosses, liverworts, hornworts and algae), vascular plants (ferns, conifers, angiosperms), lichens, and some fungi. The primary goal of the herbarium is to document and archive plant diversity, particularly from Eastern Ontario, provide access to specimens for scientific study, and make relevant data available to researchers and others who are interested (e.g. artists, writers).

People can visit the collection at QUBS in person by contacting our Collections Manager, Adriana Lopez-Villalobos. However, as we wish to make these herbarium specimens discoverable and more accessible to a broader audience, we are digitizing the entire collection. The project involves 5 stages: 1) creating an initial database, updating nomenclature, and repairing and barcoding our plant specimens, 2) high-resolution imaging, 3) transcribing data from labels, 4) data cleaning and mapping onto Darwin Core terms (a standardized lexicon for specimens), and finally, 5) sharing these data with the Global Biodiversity Information Facility (GBIF – via our local node, the Canadian Biodiversity Information Facility (CBIF) and the Canadensys Network ( By digitizing and sharing our plant specimens online, QUBS not only allows more people to discover and use specimens,  but also prevents fragile specimens from further damage due to repeated handling.

This slideshow requires JavaScript.

Data portals like GBIF gather information from museums and institutions from all over the world, and allow anyone with a computer and internet access to explore and use years of data collected on almost  every known species and ecosystem on the planet. Our hope is that sharing the data from the Fowler herbarium via GBIF will foster new collaborations and research projects, and lead to the discovery of new patterns in the plant diversity around QUBS and beyond.

Here is something to contemplate. The Fowler Herbarium has specimens from as early as 1819. This means that we have two centuries worth of plant diversity and distributional  data! Having historical specimens allows us to explore the diversity that was present in decades past; for species that have become locally extinct in some areas, a herbarium specimen might represent the only record of that plant’s original distribution. In some cases, a single herbarium collection might only have one or a few plant specimens from a given species and this might not be particularly useful for scientific study, but combined with data from other herbaria around the world could produce a database of hundreds or thousands of records. These data could potentially translate into snapshots of  a species past distribution but also allow us to predict its future prospects.

The possibilities for addressing ecological, evolutionary and social problems are vast! Just to mention some examples. GBIF data have been used to evaluate changes in wildlife populations (Callcutt et al. 2018), to understand colonization dynamics of invasive species (Park & Potter 2015; Dellinger et al. 2016), to develop novel models to track insect migrations using pollen metabarcoding (Suchan et al. 2018), and to protect species at risk (Meza-Parral & Pineda 2015; Clavero & Hermoso 2015). They have also been used to inform estimates of the risk of vector-borne disease outbreaks (González-Salazar 2017; Deka & Morshed 2018) and to quantify the allergy risk under future climates, as potent aero-allergens species, such as ragweed (Ambrosia spp.) expand their ranges (Rasmussen et al. 2018). We are just starting to explore the uses of data form natural history collections. This is reflected in a statement from Professor Pamela Soltis (University of Florida)

 As the number of digitized natural history specimen records continues to increase, it’s important to see how the data have been used so that we can build on those results and develop new uses for the future

QUBS provides many opportunities for students to gain experience in many fields of research. Aside from ecological or evolutionary studies, for me, assisting in the Fowler Herbarium and working at QUBS during the summer of 2019 allowed me to gain valuable experience in research data management best practices, data manipulation and database management. These skills will be incredible assets in my field of interest, bioinformatics. The Data and Collections Manager, Adriana Lopez, certainly spares no effort in creating and expanding a digital database for the Fowler Herbarium and we hope that even more data will be available soon for people around the world.

Literature Cited

  • Callcutt K., Croft S., and Smith G.C. 2018. Predicting population trends using citizen science data: do subsampling methods produce reliable estimates for mammals? European Journal of Wildlife Research, 64:28.
  • Clavero, M. and Hermoso, V. 2015. Historical data to plan the recovery of the European eel. Journal of Applied Ecology, 52: 960-968.
  • Deka, M.A., Morshed, N. 2018. Mapping Disease Transmission Risk of Nipah Virus in South and Southeast Asia. Tropical Medicine and Infectious Disease, 3:57.
  • Dellinger, A. S., Essl, F., Hojsgaard, D., Kirchheimer, B., Klatt, S., Dawson, W., Pergl, J., Pyšek, P., van, Kleunen, M., Weber, E., Winter, M., Hörandl, E. and Dullinger, S. 2016. Niche dynamics of alien species do not differ among sexual and apomictic flowering plants. New Phytologist, 209: 1313-1323.
  • González-Salazar, C., Stephens, C.R., and Sánchez-Cordero, V. 2017. Predicting the Potential Role of Non-human Hosts in Zika Virus Maintenance. EcoHealth, 14:171-177.
  • Meza-Parral Y, Pineda E. 2015. Amphibian Diversity and Threatened Species in a Severely Transformed Neotropical Region in Mexico. PLOS ONE, 10(3): e0121652.
  • Park, D. S. and Potter, D. 2015. Why close relatives make bad neighbours: phylogenetic conservatism in niche preferences and dispersal disproves Darwin’s naturalization hypothesis in the thistle tribe. Molecular Ecology, 24: 3181-3193.
  • Rasmussen K., Thyrring J., Muscarella R., and Borchsenius F. 2017. Climate-change-induced range shifts of three allergenic ragweeds (Ambrosia L.) in Europe and their potential impact on human health. PeerJ, 5: e3104.
  • Suchan, T., Talavera, G., Sáez, L., Ronikier, M., and Vila, R. 2019. Pollen metabarcoding as a tool for tracking long‐distance insect migrations. Molecular Ecology Resources, 19: 149- 162.

Quote from Dr. Pamela Solitis

Sino-Canada Eco Dreams or How We Humans Change Plant and Animal Communities in our Rivers and Lakes

Post by Art Goldsmith

(unless otherwise credited,  photos by Art Goldsmith)

Field Course 2015: Effects of Human Development on Aquatic Environments and Biodiversity in Canada and China

Chapter 3

World-Wide Fish Physiology and Ecology with Professor Wang AND Views from QUBS

Professor Yuxiang Wang and Fish Facts


On July 30, 2015, Professor Yuxiang Wang presented his lecture on Fish Biodiversity/Physiology and Conservation. The slide presentation roamed the globe through Yuxiang’s eyes, to many of the most diverse and least diverse ecosystems. His breadth and depth of observation, analysis and research kept the students and me in maximum learning mode.


The assembled class put down their cell phones and looked their very best for this photo, as they awaited Professor Wang.

The basics and fish facts are required to understand the more detailed knowledge imparted on us later in the session.


Any excellent introductory course will inform participants about the big picture. The slides above and below answer the questions: How many kinds of fish are there and where did they come from? Fish are indeed vertebrates, animals with backbones, just like us and the other mammals, birds, reptiles and amphibians. And there are lots and lots of different kinds of fish.

Canada’s record on marine and freshwater conservation isn’t the brightest, with less than 1% of our oceans under any kind of protection, and that protection is very minimal, as resource industries still take priority even in our marine parks. Australia, for contrast, has managed to protect 38% of its surrounding marine space. When I saw Professor Wang’s slide above, it reminded me of the quest to save diversity among species, since diversity is the underpinning of a healthy biosphere.

I recall visiting Biscayne National Park in Florida, USA, where one of the pamphlets proclaimed that there were more fish species in this national marine park than all the vertebrates in Colorado put together. These fish species require a healthy shoreline wetland environment and unpolluted water to persist. Biscayne National Park also has a large coral reef, another important and stressed element for marine ecology globally.

Evolutionary biology and the origins of fish are subjects that require large volumes to achieve basic understanding. Yiuxang’s slide is a great summary. Note the exclusions from generalities about fish (lamprey and hagfish). The lamprey is of special interest for me, as it was one of the first alien species to reach our Great Lakes and St. Lawrence River, threatening an already stressed fishery. Having not focused on this species in decades, Yiuxiang provided a good summary of recent developments regarding attempts to control the Sea Lamprey, (Petromyzon marinus). Of special note, the lamprey is native to the North Atlantic. It is anadromous (more later) and could reach the Gulf of St. Lawrence. The St. Lawrence Seaway project of the1950s provided convenient routes around rapids and falls, yielding a fresh supply of fish to larval lamprey throughout the St. Lawrence and Great Lakes.


Hagfish and Lampreys

The Jawless fish kicked (hard to do without feet!) things off, specifically, Hagfish and Lampreys.


The 60 species of Hagfish with rudimentary eyes live in hypoxic habitats (low oxygen) with little light (i.e., they may live in ocean depths). Here are a few more facts about Hagfish from U.C. Berkeley:

“The adjective which best describes the Myxini is “Lovecraftian”. Hagfish are long, slender and pinkish, and are best known for the large quantities of sticky slime which they produce. Hagfish have three accessory hearts, no cerebrum or cerebellum, no jaws or stomach, and will “sneeze” when their nostrils clog with their own slime. They are found in cold ocean waters of both hemispheres, scavenging dead and dying fish but also preying on small invertebrates.

Hagfish are almost blind, but have well developed senses of touch and smell. They have four pairs of sensing tentacles arranged around their mouth. The mouth lacks jaws, but a Hagfish is equipped with two pairs of tooth-like rasps on the top of a tongue-like projection. As this tongue is pulled back into the Hagfish’s mouth, the pairs of rasps pinch together. This bite is used to tear into the flesh of dead and dying fish which have sunk to the muddy ocean bottom, or in catching and eating marine invertebrates. By far, the largest part of their diet is polychaete worms. Due to their slow metabolism, Hagfish may go for up to seven months without eating any food.”

Or you can read all of the facts here.

I bet the creature in the “Alien” movies was based on the hagfish and lamprey.

Their “vertebrate” status has also become compromised through adaptive evolution, as their spinal column is vestigial (no vertebrae) with a partial cranium. There are hagfish in the Gulf Islands off Vancouver.

Instead of tooth-like Hagfish rasps, the lamprey’s mouth evolved suctorial disc teeth. The front end of a lamprey is a sight, looking more like a sanding disk with its circular array of inward pointing teeth. They do not have the paired fins of most other fish. Indeed, like the hagfish, lampreys attach themselves to a fish, rasping away flesh using the “buzzsaw” mouth. Ouch! They are also anadromous. Like Atlantic Salmon, the adults spawn and develop in freshwater and then return to saltwater to live. Larvae live buried in freshwater systems. Biologists applied their knowledge of the lamprey to control it. Lamprey use chemo-sensing, rather than sight, to manoeuvre through their habitat. Like many insects, they use pheromones to find each other for breeding. Dr. Lee, at Michigan State University, used this knowledge to attract males, which were then sterilized. Returning to the environment to mate, these males, of course, produce no offspring, reducing (not eliminating) populations. This application of biology is much more refined, effective, economical and environmentally benign than the first approach to control: chemicals, which kill much more than the target species. The photo above, from Yuxiang’s presentation shows a lamprey attached to and feeding on a Lake Trout. The lowest photo in the slide shows the mouth of the lamprey.

Now that we have dealt with the exceptions, let’s survey the rule—the bony fish.

Cartilaginous and Bony Fish


The sharks and rays are classified in a separate group (Class Chondrichhyes), which are considered to be older than other jawed fish on the evolutionary scale. The Holocephali (Ratfish and cousins) are less well-known deep-water living marine fish.

The bony fishes (Class Osteichthyes), are the rest of the fish species and the most familiar to us. Avid fishers know well the species that respond to our lures and bait. There are so many more. One of the more illustrious species, the Coelacanth, a living fossil (It was thought to have become extinct 80 million years ago. Oh well, science does learn from mistakes!) was featured prominently in my McGill University education in the late 1960s.

Read this fascinating story from the Washington Post, and this other article from the Australia Museum:

The discovery of the Coelacanth has filled in answers to evolutionary questions about the evolution of bony fish and the tetrapods (those of us with legs).

This brief background led Yuxiang into the meat and potatoes (or fish and chips?) portion of his presentation: adaptive and ecological physiology of fish.


Teleosts are any member of a large and extremely diverse group of ray-finned fish. Along with the chondrosteans and the holosteans, they are one of the three major subdivisions of the class Actinopterygii, the most advanced of the bony fishes. The teleosts include virtually all the world’s important sport and commercial fishes, as well as a much larger number of lesser-known species. When the average person thinks about fish, he/she usually has a teleost in mind.

The slide above describes how fish have adapted structurally and functionally to their environment. The following terms are important to understanding fish physiology in some of the more extreme habitats studied by Professor Wang. The slide below maps out typical teleost body parts.

Ammonotelic refers to a fish that excrete nitrogenous waste derived from amino-acid catabolism in the form of ammonia.

Poikilotherm refers to an organism that cannot regulate its body temperature except by behavioural means, such as basking or burrowing.



We hear daily about increasing pressure on our marine and freshwater species. Fish are staples of the human diet. Therefore, conservation would logically move to the top of our global “to do” list. That isn’t the case, and research like that of Professor Wang’s aids those of us with the motivation to act and provides us with the evidence needed for change. Of course, the Queen’s University Biological Station (QUBS) is a key resource for freshwater fisheries research. Researchers come from all over North America to study the fish in Lake Opinicon and other surrounding lakes. There are also lakes wholly contained within the QUBS properties, making them ideal for whole lake research. Lake Opinicon’s shore houses the QUBS facilities. It is quite a diverse lake. In fact it is a bit more diverse than the list given in the slide below. The two fish pictured in the slide are two other very common Centrarchidae, the Blue Gill (Lepomis macrochirus), and Pumpkinseed (Lepomis gibbosus) Sunfish. These two fish are often the first fish a child fisher may catch in our area. There is a Centrarchidae missing: the Black Crappie, (Pomoxis nigromaculatus) seen in the photo beside “Fish in Lake Opinicon”. Those are Gregory Bulte’s hands briefly showing the fish to his class this summer at QUBS. Look for another edition of this blog featuring Grégory Bulté’s Ecology Field Course.



Onward to Professor Wang’s research, which focuses on fish physiology and ecology. Back in my student days, the term physiology caused me to shudder and run. If only Yuxiang Wang’s approach had been available back then. He made a clear and easy-to-understand connection between physiology and ecology. Also, he makes a good case for this kind of study to better understand fish which are important to the health and well being of local people. I especially appreciate the non-laboratory approaches that Wang takes. He gets to know and to study his fish on site in some of the more interesting places on Earth.

Who wouldn’t call Amazon waters “amazing”? Some of Professor Wang’s work is done at the confluence of two main Amazon tributaries— the Rio Solimoes and the Rio Negro— at Manaus, Brazil. Professor Wang is telling us, by pointing at the water chemistry slide, to look at the amazing water chemistry differences between the two.

The Rio Negro’s black waters are a result of their origin in the mineral poor tropical rainforests of northwestern Brazil. Alternatively, the Rio Solimoes originates in the Andes and covers a great deal more distance than the Rio Negro. Therefore, its waters are mineral rich. The Rio Negro is  acidic, much like our boreal rivers that carry heavy loads of carbonic acid, while Rio Solimoes water is almost neutral. As its name implies, the waters of the Rio Negro are very black when seen from aerial or satellite views, whereas those of the Rio Solimoes are muddy and creamy looking from the same views. Even after the rivers come together, you can see these colour differences far downstream. Of course these differences mean that fish living in each river are adapting to these very different conditions. Therefore, this is an ideal spot for comparative fish physiology.

From the category “I did not KNOW that!” Yuxiang tells us that the intense flow of the Amazon River pushes its fresh water 300 kms out to sea in the South Atlantic. Ships crossing this band of fresh water would sink if they were too heavily laden, due to the drop in buoyancy crossing from salt to Amazon River water.

Pirarucu photo by Yuxiang Wang
Pirarucu photo by Yuxiang Wang

The Pirarucu (Arapaima gigas), shown above, grows to enormous sizes in the challenging Amazon waters. Like most fish, (tuna and billfish are exceptions), Pirarucu are poikilotherms, that is their body temperatures change with environmental temperature changes. Since water has a high heat capacity, much higher than air, poikilotherms have less of a challenge in water than terrestrial vertebrates. This gigantic Amazon fish adapts in many ways. In the very warm oxygen-poor waters of the Amazon, Pirarucu breathe air using an adapted swim bladder. Another extraordinary adaptation is the Pirarucu kidney. Most animals need a way to excrete nitrogen, a necessary by-product of body waste management. Birds, reptiles and insects excrete uric acid, and mammals excrete urea. These latter biochemicals avoid the toxicity of the simpler nitrogen compound, ammonia. Therefore, it is astonishing to learn that the Pirarucu is ammonotelic, excreting ammonia. The warm Amazon waters do lack oxygen, and daily oxygen and temperature fluctuations may also be great.

Oscar photo by Yuxiang Wang .
Oscar photo by Yuxiang Wang

The Oscar (Astronotus oscellatus), pictured below, is highly adapted to avoiding hypercapnia, excessive carbon dioxide in the bloodstream, typically caused by inadequate respiration.

Just for fun: did you know that teleosts make up such a large part of the oceans’ biomass that their “poop” maintains the pH of the waters, regulating acid-base levels.

To China we go…. Professor Wang has conducted ongoing research at the remarkable Lake Qinghai, a very large lake on the cold, dry north central plain of China. Recent socioeconomic developments and internal migration have changed the local human population culture. The original inhabitants have great respect for the lake and its formally teeming fish species, the Naked Carp (Gymnocypris przewalski). The newly arrived inhabitants have decided to develop irrigation-based agriculture in the lands around the lake, which has resulted in a 10-12 cm drop per year in lake levels. The pH of the lake is 9.4 (very basic), and it has a high Magnesium and low Calcium concentration. When lake volume decreases, salinity increases, putting the animals adapted to the natural pH at risk. You may read about the lake’s story in the work cited in the slide below (Wood et al.) and by following up with Professor Wang’s research.


Naked Carp (photo by Yuxiang Wang).
Naked Carp (photo by Yuxiang Wang).

The next slide cites “Wood et al” and their work on how the carp have adapted to the rapid (only 50 years) decline in Lake Qinghai water volumes and increased salinity. Wang’s work has shown that much needs to be done to protect the lake and its biological community, as imbalances threaten its most vulnerable rare species.


The students also had many field opportunities during their two weeks in Canada. They toured the Thousand Islands and the Kingston sewage treatment plant. They went to Parliament Hill in Ottawa and then, very central to any Canadian biologist’s bucket list, visited the collections of the Canadian Museum of Nature in Aylmer, Quebec. Thanks to Team Round-headed Apple Borer and to Mark Szenteczki for the following photos:

This slideshow requires JavaScript.

Thanks to the students and Mark,  and these two course creators,producers, directors and stars. We will see you in China for this course next year!

Professor Yuxiang Wang and Professor Stephen Lougheed. And your Blogger, Art.
Professor Yuxiang Wang and Professor Stephen Lougheed. And your Blogger, Art.
Yuxiang and Steve
Yuxiang and Steve

Tree Swallows research is the next topic, and look for stories and photos featuring Professor Raleigh Robertson, the long-time Director of QUBS, who started Tree Swallow research at Queen’s in the 1970s. Also, some photos of QUBS will be featured.

Sino-Canada Eco Dreams or How We Humans Change Plant and Animal Communities in our Rivers and Lakes.

Post by Art Goldsmith

(unless otherwise credited,  photos by Art Goldsmith)

Effects of Human Development on Aquatic Environments and Biodiversity in Canada and China Field Course 2015

Chapter 2 – Student Seminars

Invasive Species Seminar

Environmental and Ecological Impacts of Dams
by Team Scrambled-Egg Slime Mold

Seeing this topic connects me to relevant strong and vivid personal memories. Since World War 2, so much of human enterprise has been about dams, principally those built to satisfy our gluttonous appetite for cheap energy. In the 1970s, I worked with Professor John Spence of McGill University, who took on the role as Science Advisor for the First Nations’ court battle against Hydro Quebec’s massive James Bay development (1972). Those dams are now built, and the environmental and social consequences well known.

Read about it here.

Therefore, it was with more than a little interest that I entered into this discussion with these four students.

Sarah Minnes (sitting left), Zixing Li (sitting right), Fei Jin (standing left), Natalie Wang (standing right)
Sarah Minnes (sitting left), Zixing Li (sitting right), Fei Jin (standing left), Natalie Wang (standing right)

Canada has a large share of hydro development mega-projects, including James Bay (Quebec), Churchill Falls (Newfoundland and Labrador), St. Lawrence–Great Lakes (Ontario), Churchill–Nelson (Manitoba), plus so many more megawatts of capacity on most of our streams in the populated south of the country. When you add water supply, navigation and irrigation dams, finding natural rapids and falls in southern Canada is now a challenge! Some species, like the Rapids Clubtail dragonfly (Gomphus quadricolor), which is dependent on southern rapids for habitat, are now rare and endangered. Hydrological and stream hydraulics changes cause an array of undesirable ecological effects.

Although no southern projects have recently caused major social disruption in Canada, the same is not true for China. In Canada, only the Eisenhower Dam project, which created Lake St. Lawrence, comes to mind. In that 1950s case, three villages were flooded. Most of the homes and businesses were moved to a larger planned village nearby (Ingleside, Ontario) before flooding. Historical buildings wound up at a new interpretive historical village (Upper Canada Village, Morrisburg, Ontario).

In China, when we hear that 1.3 million people lost their homes to the Three Gorges Project, the scale boggles the mind. Already threatened ecosystems and their species are now contending with new development pressures. Just opened in 2003, this dam across the Yangtze River is associated with the largest capacity power station on our planet. The reservoir is a 1,000-square kilometre lake which reached its “final height” in 2010.

One can only imagine the ecological and socioeconomic consequences. But why do that, when, like our four team members, you may easily read the facts yourself.

Oil Spills
Team White-winged Scoter (Melanitta deglandi)

Team Members: Mengxi Wu, Chang Leo, Anyi Tang, Manreet Kaler
Team Members: Mengxi Wu, Chang Leo, Anyi Tang, Manreet Kaler

Team Members: Chang Leo, Mengxi Wu, Anyi Tang, Manreet Kaler

My time with this group was short. I talked with Chang before the other three team members arrived. He started by telling me about the different kinds of oil and oil products which are transported and spilled:

1. very light
2. light
3. medium
4. heavy

Of the four types, very light is the most difficult environmentally due to its volatility and high toxicity. We all know well the results of offshore drilling infrastructure collapse (BP’s Gulf of Mexico drilling platform) and transportation accidents (pipeline breakages and shipping accidents, the Exxon Valdez in Alaska being one of the best known and most destructive).

The group also reported on one of the activities on the course blog. On August 3rd, the students participated in a fish seining learning exercise. Seining is one of the most straightforward ways to sample the population of fish along a shoreline. Partners spread out after extending a net to its full length and attaching it to the appropriate foot. The two people at each end then move out, so as to create a pocket with the net. They then envelop the fish by moving toward each other, closing off the pocket. Fish are transferred to buckets for identification, counting, and data collection (age, sex, condition, etc.). This team caught 158 fish, 7 species.

Aquaculture in the Modern Era
by Team Black-shouldered Spinyleg (Dromogomphus spinosus)

Huck Nelson is from PEI and feels a vested interest, like so many young Maritime biologists, in the burgeoning aquaculture industry. His hopes and concerns were echoed by the Chinese members of this team.

Upon meeting, we immediately entered into an animated discussion about the origins of aquaculture. The team found reference to British Columbia First Nations’ clam farming as far back as 5,000 years. Evidence of fresh water fish farming in Egypt would be concurrent, and carp in china may reach back as far as 4,500 years. So there is a long-term human penchant for stewardship of aquatic animals in addition to terrestrial animals.

At Queen’s, the Bruce Tufts’ lab in Fish Physiology and Fisheries Biology is investigating the effects of different applications on aquaculture fish through their fish physiology expertise. For example, the team learned that a flow-through system is 200 times less efficient than a bio-filtered re-circulation system.

In terms of environmental impact, aquaculture is having a variety of undesirable outcomes; the most concerning being the weakening of wild populations, local pollution (flow-through) and the focusing on mono cultures.

Chinese aquaculture dwarfs our own, as 70% of global aquaculture production is Chinese. Their products do show up in our stores. Asian shrimp production (India, Vietnam, Malaysia, Thailand and China) has become big business, as most of the large volumes of shrimp now sold to North America come from that region.

Junshu Li, Yutong Liu, Huck Nelson, Xuewei Wang
Junshu Li, Yutong Liu, Huck Nelson, Xuewei Wang

I learned so much from this and subsequent discussions. For me, that is the big payback. Learning in such an enriched environment is a privilege. Thanks, Xuewei, for the Chinese lesson! “Yu” means fish; “tsing” is please; and Beijing has 24 million people, which is more than the population of the provinces of Ontario and Quebec combined.

spinyleg_the_actual_beastEach team is named for a common and often seen species seen in our aquatic ecosystems. This blog chapter is about the students and their learning. Surely, you miss seeing some great nature shots, so here is my photo of the Black-shouldered Spinyleg taken at the QUBS dock.

Climate Change
Scenarios, Predicted Impacts on Aquatic Ecosystems and
Strategies to Mitigate continued Change
by Team Cherry-faced Meadowhawks, Sympetrum internum,

Here are some highlights from this team’s presentation.

Chiahsing Hsu
Chiahsing Hsu
Fan Wu
Fan Wu
Will Baigent
Will Baigent
Xiaofei Feng
Xiaofei Feng

In the worst case scenario, global average temperature will increase by 4.8 degrees Celsius by 2100. Ice sheets and glaciers will melt, changing northern climates and causing a significant rise in global sea levels. Our carbon dioxide levels will be 3 to 4 times pre-industrial levels. They are already at 400 PPM as measured by NOAA (USA’s National Oceanic and Atmospheric Administration). How do we know that temperature will increase this much? Paleoclimatology provides the answers, principally from ice core analysis. You can see the data well presented at NOAA, where a chart shows over the last 400,000 years natural CO2 changes and temperature changes. Note that the highest measured concentrations were about 300 PPM over this very long period of time.


Our lake ecosystems will be affected greatly, as ice cover in the Great Lakes drops by 42%, meaning species adapted to ice cover and certain temperature ranges will be pressured. River ice will be similarly affected, affecting species diversity, species range and populations. Temperature increases cause more evaporation, increasing salinity and concentrations of other minerals. Oxygen levels will decrease. Carbon dioxide levels will increase, as CO2 is very soluble in water.

Oceans are also absorbing unprecedented concentrations of CO2, increasing ocean acidity. Sea levels have risen an average of 20 centimetres and may rise an additional 1 metre by 2100.


Here, Will tells us about the current effects of climate change. You can read his full list by enlarging the photo by clicking on it.

Many regions in the world will be affected greatly if these changes come to be. The young presenters will feel the full brunt of change and are very concerned. Just a few months ago, China and the USA signed a ground-breaking protocol on climate change. China is spending $50 billion on alternative energy sources, replacing its coal-fired generators at a very fast rate. Two very vulnerable regions in China are the water-scarce North China Plain, and the flood-prone Poyang lake Region.


This graphic shows simply how ice melt will result in a vicious circle of increased heating and further loss of ice.


Fan explains some of the ways we may be able to mitigate and adapt to climate change.

The Intergovernmental Panel on Climate Change (IPCC) had produced a book-sized report in 2012 on this topic.

I found it appropriate somehow that the seminar room was made uncomfortable by the heat and humidity outside. The facts about climate change are also uncomfortable. Perhaps you have heard Australia’s Will Flannery talking about climate change. He is Chief Councillor of Australia’s Climate Council. It started as a government organization and is now a non-governmental organization financed by donors. If you do want more than a summary, then go to its website.

If you wish to delve into the details of the science around climate change, you may refer to the IPCC web site.

If research interests you, there are great opportunities provided by the Queen’s University Biological Station. Professor Lougheed posted results of his research here in this Blog in 2013.

QUBS hosts a long-term climate monitoring project (since 2009) using web cameras which monitor forest change. The project started with 12 cameras, 2 in Ontario, 1 at Qubs, and 10 more in the northeastern USA.

Biological Indicator Species
by Team Dryad’s Saddle

Lyu Wen Yang, Derek Newton, Qin Lanxue, Xing Kangnan
Lyu Wen Yang, Derek Newton, Qin Lanxue, Xing Kangnan

There are four kinds of indicator species:

  1. Gian Swallowtail
    Giant Swallowtail

    Keystone species which create their own ecosystem. Our Beaver (Castor canadensis) comes to mind. One student suggested that the Anchovy, an estuarine brackish water fish common in Chinese waters, is a Chinese candidate.

  2. Flagship species which act as a social target for conservation action. The Chinese have the Panda. We have the Loon.
  3. Sentinel species are the “canary in the coal mine”. Changes to these species tell us there is an environmental concern. Southern species spreading into our latitudes may qualify. Some dragonflies, birds and butterflies previously unheard of in our region are examples, such as Easter Amberwing dragonfly (Perithemis teneris), Red-bellied Woodpecker (Melanerpes carolinus), and the Giant Swallowtail butterlfy (Papilio cresphontes).
  4. Eastern Amberwing
    Eastern Amberwing

    Umbrella species protect other species through their activities. The beaver qualifies again. Some African/South American termites also qualify as their giant mounds bring nutrients up from the depths, creating significant areas where other species may thrive. Professor Lougheed has written a paper for this blog on these industrious social insects.

QUBS Seminars

QUBS presents a series of seminars through the summer. They are most informative and entertaining. This year’s series ended Wednesday, August 26th with Stephen Lougheed’s favourite species. Some of his early research projects took Steve to southern South America, where he learned to appreciate the Rufous-Collared Sparrow, Zonotrichia capensis. I cannot possibly do justice to Steve’s love of this species in this blog. His enthusiasm has generated motivation to experience these birds personally. For now, I suggest we experience vicariously through the Web: Rufous Collared Sparrow

What follows is another good example of one of these seminars on July 29, 2015.

James Sinclair of Queen’s University:

James_SinclairJames’ topic: Strength in Size or Numbers – disentangling the factors involved in the establishment of non-native species

After dinner in the cafeteria in the Raleigh Robertson Biodiversity Centre, the class, local community members and I convened in the seminar hall in the basement. The hall is set up to accommodate about 75 people, and it was almost full.

James, in quest of an advanced degree, is studying a most pressing topic in ecology: invasive species. Since World War 2, the geometric scale human population increase, combined with ever expanding trade and human migration, has afforded many European and Asian species the opportunity to expand into the Americas (and vice versa!). Most of us have heard about exotic species getting a foothold before this era. The European Starling (Sturnis vulgaris) comes to mind. This feisty, intelligent bird was introduced in the 1890s in New York City by the American Acclimatization Society in its quest to have every bird mentioned in Shakespeare’s works among us in North America (Starlings are mentioned in Henry IV part 1). These same enterprising souls also gave us the House Sparrow (Passer domesticus).

Scientific American gave us on article on the Starling’s origin in North America.

James’ invasive species research focuses on one of our most recent cargo ship hitchhikers, the bloody-red mysid (Hemimysis anomala) which is a shrimp-like crustacean in the Mysida order, native to the Ponto-Caspian region, which has been spreading across Europe since the 1950s and is now in our own St. Lawrence River.

The theoretical basis for James’ research is the concept of propagule pressure. A propagule is a vegetative structure (bud, stem) from a plant from which new plants of the same species will spread. Therefore it is a way to propagate a species. The Red Mangrove (Rhizophora mangle) has populated the shores of the tropics and subtropics in this fashion.

Propagule pressure is a measure of the numbers of a species introduced into a region where they are not native. Since this is a composite measure, you have to know how many were introduced each time, and then how many introductions occurred and over what area. As you can see from the slides taken from James’ presentation below, this is stated as “The set of individuals introduced” and “The rate of introductions”.

Propagule_pressureThere is a minimum population required to “launch” a species and each is different. Only scientific research which emanates from these theoretical underpinnings will clarify how species get started, and this could help us develop more effective strategies for prevention and/or elimination of unwanted species.

As you can see from James’ summary, we have learned a little and have a long way to go to better understand the invasion process.

Population_effectsJames’ research target, the small crustacean which you can see in the slide below, has already managed to make the St. Lawrence River its home. The port of Montreal seems to be its “drop-off” point, so the intrepid James decided to sample the port waters to collect research subjects. The best time to collect these light-sensitive crustaceans is at night, in a most seedy part of Montreal’s harbour front. Putting his life on the line, like so many courageous biologists, James was successful in bringing back sufficient mysids to conduct his experiments in the tanks at Queen’s.

See more about James’ previous research here.

For a full listing of events at the Station, including the Wednesday evening summer seminar series, click here.

In Chapter 3 we will experience another dollop of ecological learning from Professor Yuxiang Wang, and see some of the field trips which the students experienced. Some of the facilities at QUBS will be featured. This will be the final chapter for this field course. Tree Swallows research is the next topic, and look for stories and photos featuring Professor Emeritus Raleigh Robertson, a long-time Director of QUBS who started Tree Swallow research at Queen’s in the 1970s.

How We Humans Change Plant and Animal Communities in our Rivers and Lakes

Post by Art Goldsmith.

Unless otherwise credited, all photos are taken by Art Goldsmith.

There is little in life more energizing than being amongst great young minds exploring, studying and testing some of the more pressing questions of today’s world.  Such was my opportunity when Queen’s University biology professors Stephen Lougheed and Yuxiang Wang invited me to be with them as they led the Canadian version of the following course at the Queen’s University Biological Station.

Effects of Human Development on Aquatic Environments and Biodiversity in Canada and China Field Course 2015

Aided by research associate Mark Szenteczki, Queen’s grad students Mingzhi Qu and Wenxi Feng,  Lougheed and Wang provide Chinese and Canadian undergraduate biology and environmental science students with an opportunity for intensive learning in the field.  This learning is mixed with a joyful and exhausting itinerary through some of our country’s large and heavily populated aquatic systems.  Learning continues into the evenings with seminars and lectures by course leaders, other biologists and ecologists, and by the students themselves, working in teams.

Partnering with China’s Tongji University, Queen’s University has developed the Sino–Canada Centre for Environment and Sustainable Development, with the Biological Station being the Canadian portion of the Centre.

Commemorative plaque recognizing the Sino-Canadian Centre, and the QUBS Yangtze Environmental Specimen Bank sister station relationship.
Commemorative plaque recognizing the Sino-Canadian Centre, and the QUBS Yangtze Environmental Specimen Bank sister station relationship.

Although it predates establishment of the Centre, the course, which began in 2005, reflects the Centre’s spirit and its goals.  The course is given in summers alternating yearly between China and Canada.

While I experienced only several days of the two-week course at the Biological Station, thanks to material provided by professors Lougheed and Wang, Teaching Assistant Szenteczki and the students, the following includes personal observations, as well as events outside those days when I was present.  I have divided my observations into several chapters.  In no way is this information comprehensive.  Rather, my intent is to provide you, dear reader, with an overview that skims the surface of the wealth of detailed knowledge packed into this very richly composed course.

Course Day 1

The field course provides a rich diversity of experience.  On Day 1 at QUBS, the students enjoyed learning about Eastern Ontario natural history and avian diversity.  They ended the day with a nocturnal field trip around the Station where they experienced owls, frogs and the numerous insect species which emerge after dark.  This blog isn’t intended to give a full annotated itinerary of the course, but rather provide some flavours and snippets of course experiences and content.

First up, a hike at the Station on the Cow Island Marsh Trail.

Cow Island Trail sign at the Opinicon Campus of the Queen's University Biological Station.
Cow Island Trail sign at the Opinicon Campus of the Queen’s University Biological Station.

Any aquatic ecology course has to consider the most productive biological systems—wetlands.

Classification of wetlands is, itself, an interesting and diverse field of study.  For the purpose of this blog, we will focus on four classes: marshes (fresh and saltwater, and those in between); fens; bogs; and swamps.  Wetland definitions are tenuous and these common names differ from place to place.  Much like common bird or plant names, the terms change.

If you wish a more studied and rigorous wetland classification system, I suggest a good textbook, Wetland Ecology: Principles and Conservation, Second Edition, (Cambridge University Press, Cambridge, UK, 2010), by Dr. Paul Keddy, who also happens to live in Eastern Ontario.

Another helpful reference is the U.S. Geological Survey’s National Water Summary on Wetland Resources.


Marshes occur in and along ponds, lakes and rivers; in fact, they occur in and along many aquatic environments.  Defined by rich natural nutrient sources, herbaceous emergent vegetation and a neutral pH, marshes are highly ecologically productive places with a diversity of plant and animal life.  Of course, they are usually wet!  That is, the soils of marshes are usually saturated and overlain by water.  There are tidal and non-tidal marshes.  Marine marshes are a particular favourite of mine.  More about that later.

The Cow Island Marsh is an excellent example.  Like so many local marshes in Eastern Ontario, this one is dominated by Common Cattails, Typha latifolia, seen below.

Common Cattails, Typha latifolia
Common Cattails, Typha latifolia

Look closely, though.  Increasingly, I have noticed another similar species, Narrow-leaved Cattails, Typha angustifolia, becoming more common and even dominant in some marshes.

On July 29, 2015, Instructor Dale Kristensen of Queen’s University led a walk at Cow Island Marsh that focused on his theme: Plant diversity, identification & importance.

Thanks to the members of team “Scrambled-egg slime mold,” Fei Jin (Fudan University), Zixiang Li (Beijing Normal University), Sarah Minnes (Memorial University) and Natalie Wong (University of Toronto), for their write-up on this event.  Thanks go out to Mark Szenteczki as well for the two photos showing Dale leading the students at Cow Island Marsh.

This slideshow requires JavaScript.

Some of the plants and scenes observed at this marsh.

Swamp Milkweed, Asclepias incarnata
Swamp Milkweed, Asclepias incarnata

Swamp Milkweed, Asclepias incarnata, which is not as familiar as its field growing cousin, Common Milkweed.  It is, though, a favourite also of many butterflies.

Marsh Bellflower
Marsh Bellflower

I had not noticed the Marsh Bellflower, Campanula aparinoides, before.  Dr. Kristensen identified it immediately as a common local marsh inhabitant.  It is sometimes overlooked because of its diminutive size and vine growth habit that often causes the majority of the long narrow leaves to be hidden by other plants

Marsh Bellflower stretched on boardwalk.
Marsh Bellflower stretched on boardwalk.

To the right are the stem and leaves of the same plant stretched across the boardwalk to enable photography.

Note that the plant was not harmed during this process!

Many odonates (dragonflies and damselflies) inhabit the marsh in midsummer.

One common dragonfly is the Twelve-spotted Skimmer, Libellula pulchella (photo below).

photo9LpulchellaAt the entrance to the boardwalk, in July, you may see a most symmetrical flower, the Buttonbush, Cephalanthus occidentalis, a wetland-loving member of the Madder family.

European Frog-bit
European Frog-bit

Invasive species, a subject of a talk given by James Sinclair at QUBS during the China–Canada course, are apparent in the marsh.  Look for another posting featuring Sinclair’s presentation.  Though the Purple Loose-strife (Lythrum salicaria) is now controlled, the plant below, the European Frog-bit, Hydrocharis morsus-ranae, is invading most of our marshes.

About 23 years ago, the Ontario Ministry of Natural Resources and Forestry (OMNRF), in partnership with the Ontario Federation of Anglers and Hunters (OFAH), established an Invading Species Awareness Program, where you can learn more about this species and how to control it, as well as the growing number of species invading Ontario.

Flowering Rush
Flowering Rush

The lovely, and invasive, Flowering Rush, Butomus umbellatus, Westmeath Provincial Park, Ontario.

Human effects on all wetlands have reduced these important ecosystems both qualitatively and quantitatively.  This photo permits us a more sanguine view, perhaps echoing a previous time when the marsh and its human inhabitants lived more harmoniously.  The marsh is in the foreground, Cow Island on the upper left and Lake Opinicon beyond.

Marsh - Lake Opinicon and Cow Island
Marsh – Lake Opinicon and Cow Island


The course focuses on freshwater systems.  The Queen’s University Biological Station includes properties in the Frontenac Axis, a band of the Canadian Shield that extends from the Algonquin Highlands across the St. Lawrence River into New York State, where the band widens to form the Adirondacks.  Swamps, bogs, marshes and fens are a feature of the rocky forested landscape.  Locally, swamps and marshes are well represented.  One of the best fens in the area is the White Lake Fen, near Arnprior, Ontario.

Fens receive groundwater, and, therefore, are more nutrient rich and biodiverse than bogs which receive only rainwater.  Both are characterized by both herbaceous and woody water-loving plants, including many orchid and carnivorous plant species.

White Lake Fen
White Lake Fen


Cedar grove - Stittsville
Cedar grove – Stittsville

Swamps are characterized by woody vegetation.  Cedar swamps abound in Eastern Ontario.  Eastern White Cedars, Thuja occidentalis, tend to be some of the oldest trees in our country.  Drainage has left a great deal of our cedar swamps with a lowered water table, which has caused a drop in diversity and no cedar regeneration.  Cedars are very adaptable, though, and upland populations are increasing as they invade abandoned farmlands.  This points out a problem with the way we organize our conservation efforts around endangered species instead of endangered ecosystems.  The cedar is definitely not endangered.  Perhaps the cedar swamp is threatened?

Pictured on the right is a cedar grove in Stittsville, Ontario.  Previously, this grove, now a protected area, had standing water most of the year.


Bogs and fens are indeed a northern phenomenon.  In Eastern Ontario, well known large bogs exist and even have moose populations (Alfred Bog and Mer Bleue).  Just for fun, and because your blogger recently completed a lifelong dream trip to a very southern bog, here is a photo from the Okefenokee National Wildlife Refuge (southern Georgia, USA).  Bogs’ waters are only replenished by rain.  This makes them nutrient poor, acidic, wet environments characterized by peat moss.  The southern climate produces some bigger trees, and some more diversity than one would get in our local bogs.  Still, Okefenokee is NOT a swamp.

Okefenokee bog
Okefenokee bog

Course Day 2

Each team wrote their own blog about each day of the course.  For the Day 2 content, thanks go out to team ‘Dryad’s saddle’ members, Derek James Newton (Queen’s), Qin Lanxue (Tongji), Xing Kangnan (BNU) and Lyu Wenyang (d’Overbroecks).

Gray Ratsnake encountered at QUBS.
Gray Ratsnake encountered at QUBS.

Before breakfast, the group hiked, working up an excellent appetite, looking for some of the many species of birds resident in the marshes, forests, lakes and shores surrounding QUBS.  Along the way, they learned a little about the Grey Rat Snake, Pantherophis spiloides, our largest snake in Ontario and endemic to the Frontenac Axis.  This threatened reptile is often seen moving through the property.

Indeed, this blogger encountered the snake below on the same road the students hiked (right).

The students heard a Pine Warbler, Setophaga pinus; many black-capped chickadees, Poecile atricapillus; and they heard the sharp “chick-chick” calls from a Downy Woodpecker, Dryobates pubescens.  As they left the forest on their way to the marsh, they observed Common Yellowthroat warblers, Setophaga dominica; and Blue Jays, Cyanocitta cristata.  Walking along the marsh boardwalk, the students heard the “prehistoric caw” (note:  the blogger thinks of this loud abrupt call as a “groink”) of the Great Blue Heron, Ardea herodias.  They saw a Caspian tern, Hydroprogne caspia, fly over as it fished Lake Opinicon.  The first true wetland resident species encountered was the Swamp Sparrow, Melospiza georgiana, which popped up in the bullrushes and cattails.  Other species usually heard or seen around the lake are the Common Loon, Gavia immer; and the Osprey, Pandion haliaetus.

Family of Common Loons.
Osprey flying overhead.
Osprey flying overhead.

During the afternoon, the group learned about Global Positioning Systems (GPS) and applications to environmental science research.  Over the last 20 years, GPS and Geographic Information Systems, in combination with remote sensing, have become fundamental tools for learning about, conducting research on and presenting clear visualizations of environmental topics.

Mingzhi giving GPS lecture
Mingzhi giving GPS lecture

Qu Mingzhi provided comprehensive knowledge on GPS methods and applications.

Following a walk to an upland marsh, dotted with willow and goldenrod, the students were treated to another presentation by a Queen’s grad student Wenxi Feng, who is working on the applications of monitoring for eDNA.  Wenxi also presented his research at the QUBS Open House in June, which your blogger attended.  The idea is simple; the application is much more complex. Wetland organisms, such as fish, turtles and frogs, for example, through normal life processes, exude mitochondrial DNA.  Water samples may be analyzed for this DNA indicating presence or absence, density, and much more information about organisms in the ecosystem, without the need to capture or harvest the organisms.

Wenxi demonstrating eDNA methods.
Wenxi demonstrating peristaltic pump for sampling water for eDNA.

Wenxi Feng showed course participants eDNA methods and applications for environmental research. This is a developing and exciting field, which has great potential for streamlining and improving environmental monitoring.

The day ended with participants watching one of my favourite motion pictures, The Big Year.  Three American “birders” compete to see the most bird species in a single year.  Of course they are all men, who go to great lengths to find that rare bird.

With that, this first chapter of the 2015 China–Canada Field Course ends.  In the next chapter, we will follow the participants as they develop their own seminars and I will give details about several of the student seminars.


Thanks to Janice Tripp for her expert editing assistance.

New Aerial Photos of Queen’s University Biological Station

Mark Conboy, together with Chris Grooms, has provided us with some beautiful aerial photos of the various land holdings. Mark has labeled major water bodies and other features to orient himself. With the topographical maps we also have on line, this provides researchers and students with a nice vantage of the aquatic, hydrological and vegetation diversity at QUBS. Below is just one example. The others can be found | here |.

Aerial photo of Barb’s Marsh and environs.

New checklist of the trees, shrubs and vines of QUBS.

Introduced Tartarian honeysuckle (Lonicera tatarica) with snowberry clearwing (Hemaris diffinis). Photo: Philina English.

Mark Conboy and Adele Crowder have contributed a checklist of the trees, shrubs and vines of the region centered on the Queen’s University Biological Station. It may be found | here |. With this addition we now have a remarkable of checklists (spanning lepidopterans to ferns) mostly co-authored by Mark. In the near future we hope to add mammals. I also hope that we can get a first pass list of the non-woody flowering plants soon.

New fern checklist for the Biological Station available.

Walking fern (Asplenium rhizophyllus) colony.

Mark Conboy (Queen’s University) and Jim Pringle (Royal Botanical Gardens) have assembled a very nice checklist of the pteridophytes of the Queen’s University Biological Station. It can be accessed | here |. This is one of many contributions that Mark has made (in collaboration or solely-authored) and his efforts are immensely appreciated.

Slug expert Ulrich Schneppat visits QUBS

On Thursday September 25 slug expert Ulrich Schneppat visited QUBS to help document our terrestrial gastropods and search for the charismatic

Adam Zieleman (left), Ulrich Schneppat (centre) and Vanya Rohwer (right) looking for slugs on the Bonwill Tract. Photo: Mark Andrew Conboy.
Adam Zieleman (left), Ulrich Schneppat (centre) and Vanya Rohwer (right) looking for slugs on the Bonwill Tract. Photo: Mark Andrew Conboy.

introduced Giant Garden Slug (Limax maximus). This is apparently the first survey of slugs ever done at QUBS.

Despite rather dry weather we did manage to find and collect 11 specimens from two genera. We began our search before dark by flipping logs which produced all sorts of other invertebrates but only a single Arion slug. After sunset things changed and we found numerous large specimens of both Arion and Philomycus. We did not find any Limax maximus but slime trails high up some tree trunks made Ulrich suspicious that L. maximus or another introduced species from the family Limacidae may be present at QUBS.

Identifying Arion and Philomycus slugs beyond genus requires dissection. Ulrich and the staff of the Bishops Mills Natural History Centre will diagnose our specimens and report the species to us at a later date.

The genus Philomycus is endemic North America. We found most of our Philomycus specimens on fallen Ironwoods (Ostrya virginiana) with very loose bark which provides shelter during the day when slugs are at risk of desiccating. This slug is sharing a meal of young Phellinus fungus with julid millipede. Photo: Mark Andrew Conboy.
The genus Philomycus is endemic North America. We found most of our Philomycus specimens on fallen Ironwoods (Ostrya virginiana) with very loose bark which provides shelter during the day when slugs are at risk of desiccating. This slug is sharing a meal of young Phellinus fungus with julid millipede. Photo: Mark Andrew Conboy.
Arion sp. are among the most commonly encountered slugs at QUBS but are not native; all are introduced from Europe. They can be found on almost any substrate close to the ground or under moist logs. Photo: M.A. Conboy.
Arion sp. are among the most commonly encountered slugs at QUBS but are not native; all are introduced from Europe. They can be found on almost any substrate close to the ground or under moist logs. Photo: M.A. Conboy.

Mark Andrew Conboy