Citizen Scientists at Work

written by 2017 SWEP intern Dayna Zunder

nesting turtle
Turtle excavating her nest in the gravel.

Doug Fluhrer Park is a 2.85 hectare waterfront park located alongside the Great Cataraqui River, just minutes from the heart of downtown Kingston, Ontario. Aaron Sneep and I (Summer Work Experience Program interns at Queen’s) got our first taste of this newly-renovated park on a gloomy Tuesday morning in June 2018 — damp weather more typical, perhaps, of a frigid and rainy spring month. It was here that we met Mary Farrar and the Friends of Inner Kingston Harbour, a group of individuals — citizen scientists, interested in the Northern Map, Snapping, and Painted turtle species that choose to make Doug Fluhrer Park their home. Mary and her team have been visiting the park twice a day since early May, once in the morning and evening,  seeking to protect turtle nesting sites. Using a small piece of metal mesh, the group has been covering the nests for two-week periods to help prevent egg predation by local wildlife (e.g. racoons). An intricate labelling system has been devised, which makes it easy for Mary and company to determine when the nest was covered, and whether the site may be a decoy nest, perhaps built by the turtles to confuse and deceive predators.

In the bay at the other side of the parking lot, three turtles basking on a log.


Aaron Sneep, QUBS GIS Student stands over a nest at Doug Fluhrer Park recording the coordinates of the sit

Aaron and I met with Mary twice during the summer. The short excursion was made from our base at the Queen’s University Biological Station (QUBS), located on Lake Opinicon. We had our Trimble GPS and mapping equipment in tow. We walked around the entirety of the park and the K&P Trail with Mary and other members of the group locating covered nests in the region. The coordinates of each nest was mapped using our state-of-the art hand-held GPS unit, the Trimble GeoExplorer, with a time-correcting receiver. This additional receiver yields sub-meter accuracy for measured data points. The average accuracy of the coordinates recorded at Doug Fluhrer Park was approximately 77 cm. More than 100 turtle nests of various species were mapped within the area on the two visits made. 

Now, you may be asking yourself what all this GPS and GIS jargon is, and what its significance for this project, for QUBS, and for biology in general is. Let me try and sort a few things out for you—let’s start with the basics. GPS, which most of us are familiar with, stands for ‘Global Positioning System.’ A GPS instrument is used to determine the geographical coordinates in the field, whereas GIS (Geographic Information Systems) is a framework used to process spatial information on the computer—in our case, we use ArcGIS, the industry standard for mapping. Once the turtle nests were mapped in the field, the handheld GPS was plugged into the computer, and the data were retrieved and input into ArcMap. The coordinates were projected, using mathematical calculations to convert the coordinate system used on the curved surface of the geoid to a flat surface—this process was performed for all data recorded. Once the data were projected into the correct spatial frame, the data points were plotted, and the purpose of this project was clear. Mary and her team are determined to conserve critical turtle nesting habitat and stop the construction of the Wellington Street extension, a proposed arterial road that would run through a narrow waterfront park beside the Cataraqui River. The large population of turtles that have made their their nests in Doug Fluhrer Park are at risk, and Mary, along with many others in the community, do not believe that the extension is necessary. The Friends of Kingston Inner Harbour are huge advocates for the turtles and do not want to see them affected by this proposed construction project.

Remote sensing has become a major component in the field of biology—GIS aids researchers and scientists in storing, analyzing and displaying data more effectively and efficiently. GIS and GPS can be used in myriad studies including phytogeography, hydrology, and conservation biology. From mapping on the ground using Trimble equipment, to using the QUBS’ LiDAR data to extract information from high-resolution satellite imagery, GIS is a constantly changing field which the 2017 QUBS SWEP students delved into. We look forward to seeing what the upcoming years of students will produce and what projects they will tackle!

We thank Mary and her team for having us map the turtle nests in the Kingston region. Mary and The Friends of Kingston Inner Harbour are dedicated and passionate conservation advocates. I look forward to their many successes in the years to come.

Mary et al.
Dayna and Aaron pose with Mary Farrar and videographer Dave McCallum